The Multiplication Operator from F p , q , s Spaces to n th Weighted - Type Spaces on the Unit Disk
نویسندگان
چکیده
Let H D denote the space of all analytic functions in the open unit disc D of the finitecomplex plane C, ∂D the boundary of D, N0 the set of all nonnegative integers and N the set of all positive integers. Let μ z be a positive continuous function on D weight such that μ z μ |z| and n ∈ N0. The nth weighted-type spaces on the unit disk D, denoted by W n μ D which were introduced in 1 , consist of all f ∈ H D such that
منابع مشابه
Generalized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کاملBilateral composition operators on vector-valued Hardy spaces
Let $T$ be a bounded operator on the Banach space $X$ and $ph$ be an analytic self-map of the unit disk $Bbb{D}$. We investigate some operator theoretic properties of bilateral composition operator $C_{ph, T}: f ri T circ f circ ph$ on the vector-valued Hardy space $H^p(X)$ for $1 leq p leq +infty$. Compactness and weak compactness of $C_{ph, T}$ on $H^p(X)$ are characterized an...
متن کاملDefinition and Properties of the Libera Operator on Mixed Norm Spaces
We consider the action of the operator ℒg(z) = (1 - z)(-1)∫ z (1)f(ζ)dζ on a class of "mixed norm" spaces of analytic functions on the unit disk, X = H α,ν (p,q) , defined by the requirement g ∈ X ⇔ r ↦ (1 - r) (α) M p (r, g ((ν))) ∈ L (q) ([0,1], dr/(1 - r)), where 1 ≤ p ≤ ∞, 0 < q ≤ ∞, α > 0, and ν is a nonnegative integer. This class contains Besov spaces, weighted Bergman spaces, Dirichlet...
متن کاملWeighted composition operators from Bergman-type spaces into Bloch spaces
Let D be the open unit disk in the complex plane C. Denote by H(D) the class of all functions analytic on D. An analytic self-map φ : D → D induces the composition operator Cφ on H(D), defined by Cφ ( f ) = f (φ(z)) for f analytic on D. It is a well-known consequence of Littlewood’s subordination principle that the composition operator Cφ is bounded on the classical Hardy and Bergman spaces (se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012